
FloWing[™](フローウィング) 偏心軸回転形調節弁 (3B, 4B)

形 VFR□□□

取扱説明書

アズビル株式会社

azbil

お願い

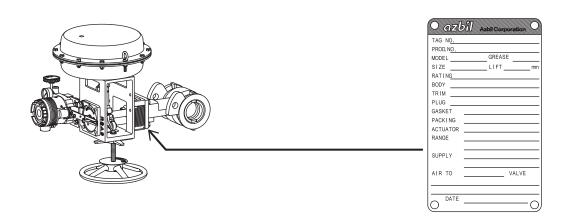
- このマニュアルは、本製品をお使いになる担当者のお手元に確実に届くようお取りはからいください。
- このマニュアルの全部または一部を無断で複写または転載することを禁じます。
- このマニュアルの内容を将来予告無しに変更することがあります。
- このマニュアルの内容については万全を期しておりますが、万一、ご不審な点や記載もれなどがありましたら、当社までご連絡ください。
- お客さまが運用された結果につきましては、責任を負いかねる場合が ございますので、ご了承ください。

はじめに

当社の $FloWing^{TM}(フローウイング)$ 偏心軸回転形調節弁(3B,4B)形 VFRをご購入いただき、まことにありがとうございます。

この取扱説明書は、本器を安全かつ確実にご使用いただくための取り扱いについてまとめてあります。製品を取り扱う前に、必ずこの取扱説明書を一読ください。また、お読みになった後は、利用される方がいつでも見られる所に必ず保管してください。

開梱と製品の確認・保管


開梱

本器は精密機器です。事故や損傷を防ぐためにていねいに扱ってください。 開梱にあたっては次のものが入っているか確認してください。

- 購入いただいたバルブ本体、操作器および組み付け機器
- 購入いただいた付属機器

仕様の確認

ご使用いただく流体条件、弁番号(TAG No.)と製品仕様が合致していることを確認してください。製品への銘板表示(ネームプレート)は、下図に示す位置に取り付けられています。

照会先

本器に関するお問い合わせは、最寄りの当社の支店、営業所へお願いいたします。お問い合わせには、必ず形番(MODEL No.)と工番(PRODUCT No.)をご連絡ください。

保管についての注意

ご購入になったバルブの保管に際して、次の注意事項をお守りください。

- 段ボール箱にて梱包されたバルブは常温、常湿の屋内に保管してください。
- 木枠にて梱包されたバルブも常温、常湿の屋内保管を原則とし、屋外に保管される場合は、開梱、仕様確認の後に保護用ポリエチレンシートで覆い、雨水浸入の防止を行ってください。
- 一度使用した本器を保管する場合は、次の手順に従ってください。
- 1. バルブ本体内部に付着または残留している流体を洗い流し、乾燥させる。
- 2. 本体部が錆びるおそれのある場合は、防錆処置を行う。
- 3. 空気配管接続口、電線管接続口には防水キャップまたはテープなどで水分の 浸入を防止する。
 - また、コネクタねじ部の保護を行ってください。
- 4. 配管接続端(フランジ面、溶接接続面)に傷がつかないように、フランジキャップなどで保護してください。
- 5. 振動や衝撃が少ない場所で保管してください。

安全上の注意

■ 絵表示について

この安全上の注意は、製品を安全に正しくお使いいただき、あなたや他の人々への危害や財産への損害を未然に防止するためのものです。安全上の注意は必ず守ってください。

本書ではいろいろな絵表示をしています。

その表示と意味は、次のようになっています。内容をよく理解してから本文をお読みください。

⚠ 警告

取り扱いを誤った場合に、使用者が死亡または重傷を負う危険の状態が生じることが想定される場合

注意

取り扱いを誤った場合に、使用者が軽傷を負うか、または物的損害のみが発生する危険の状態が生じることが想定される場合

■ 絵表示の例

<u>^</u>

このような表示は、取り扱い上、気を付けていただきたい「注意」を表す内容です。

このような表示は、してはいけない「禁止」を表す内容です。

このような表示は、必ず実行していただきたい[指示]を表す内容です。

安全作業のための注意

⚠ 警告

作業の前に配管内の圧力が大気圧力まで下がっていることを確認してください。 流体の噴出による人身事故のおそれがあります。

企注意

設置された本器に乗ったり、足場にしたりしないでください。転倒するおそれがあり、危険です。

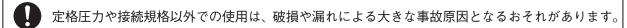
運転中は本器にみだりに触らないでください。使用環境によっては、表面が高温または低温に なっているおそれがあり危険です。

製品は重量物ですので足場に注意し、安全靴を着用してください。

作業時は飛散物によるけがを防ぐため保護めがねを着用してください。

作業時はねじ部や端面のバリによるけがを防ぐため保護手袋を着用してください。

本製品が動作しているときは、ステムコネクタ部などの可動部に触れないでください。 ◆ 季報品が割けしていることは、 手などをはさまれ、けがをする可能性があります



操作用部品であるダイヤフラムを組み付け、分解の際は、ヒトの皮膚に長時間接触しないよう に保護手袋を装着して作業してください。長時間とは、1日の皮膚接触総量が連続して10分以 上、または断続的に30分以上であることを意味します。

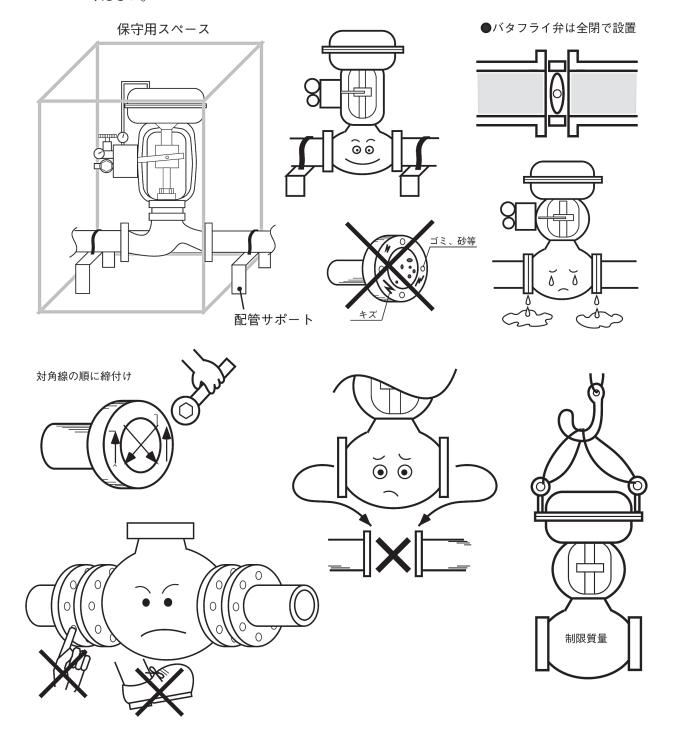
製品取扱上の注意

設置上の注意

⚠警告

バルブを配管に設置する際、バルブ本体の下やフランジの間に手や足を差し入れないでください。 指の切断や足を負傷するおそれがあります。

● 点検整備や改造後のバルブ設置に際しては、既設配管中に残存する流体を洗浄または安全な流体へ置換してください。残存する流体による人身事故のおそれがあります。

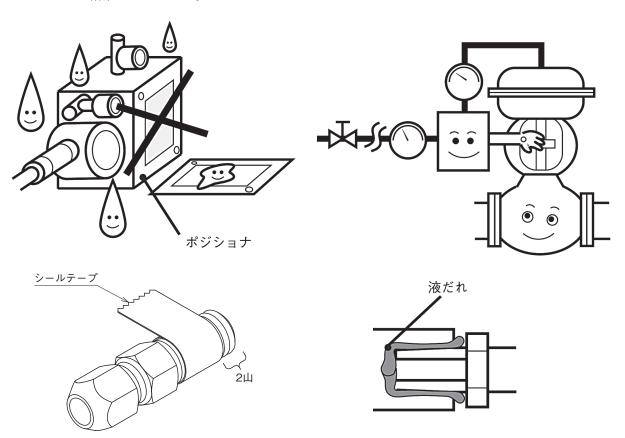

⚠注意

- バルブ上流に10D以上、下流に6D以上の直管長を確保してください。(Dは呼び配管径) 直管長が不足した場合、バルブの容量不足、異常な騒音・振動などの発生要因となります。
- 配管がバルブの重量および操作により、過大な荷重を受けないように、バルブ自身へのサポートまたは前後配管のサポートなどを考慮してください。(とくに大型弁や低温弁は配慮が必要です)
- 通路に面して設置され、部外者の接触するおそれのある場合は、柵やカバーを設け保護措置を 実施してください。
- 雨水などによる水没や、積雪による埋没、凍結の危険性がある場所への設置は行わないでください。バルブ破損の原因となります。
- **ඛ** 輻射熱を受ける場合は、遮へい板を設けるなどの対策を実施してください。操作器・付属機器 破損の原因となります。
- 塩害や腐食性雰囲気の場合は防食対策を実施してください。バルブ破損の原因となります。
- 配管接続フランジまたは、溶接配管側の損傷のないことを確認してください。 流体漏洩の原因となります。
- 配管側がフランジ溶接などを行っている場合、本体表面が高温となっているおそれがありますので、みだりに触らないでください。
- 配管側フランジはエッジ部の面取りを実施してください。けがをする可能性があります。
- 前後配管がしっかりサポートされていることを確認してください。配管接続部からの流体漏洩の原因となります。
- 設置後、配管の芯ズレがないことを確認してください。芯ズレはバルブに歪みを与え、配管接続部からの流体漏洩の原因となります。

- **配**管フランジ用ボルト・ナットは、フランジ規格に合致したものを使用してください。流体漏洩の原因となります。
- 配管フランジ用ガスケットは、流体の性状と温度・圧力条件に合致した新品を使用してください。 ガスケット破断などにより流体漏洩の原因となります。
- 配管内のフラッシング中は、バルブを全開として、開閉動作は行わないでください。溶接スパッタや異物によりバルブ破損の原因となります。

!! 取り扱い上の注意

- 振動や外力を受け、バルブの機能が阻害されるおそれのある場所への設置は避けてください。
- フランジにはガスケット面の保護と弁内部への異物侵入を防止する保護カバーが取り付けられていますので、設置時に取り外ししてください。
- バルブに損傷(本体部・操作器・付属機器各部)がないことを確認してください。
- シート部の損傷と弁座締切性能劣化を防止するため、配管内部のごみ・砂・溶接スパッタなどの異物除去と弁内部の清掃を実施してください。
- •配管フランジ間の寸法が、バルブの面間寸法にガスケット厚みを加えた値に対して適切であることを確認してください。
- 配管フランジ用ボルト・ナットの締め付けは、対角線上に交互に均等なトルクで締め付けてください。

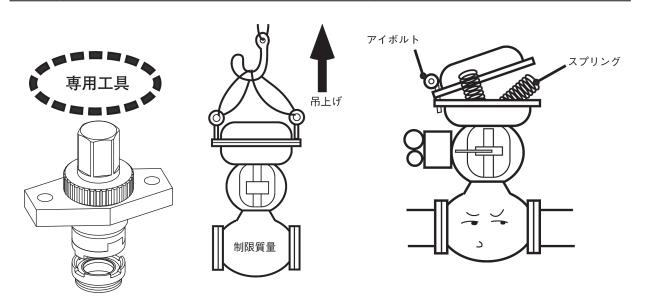

空気配管・電気工事上の注意

注意

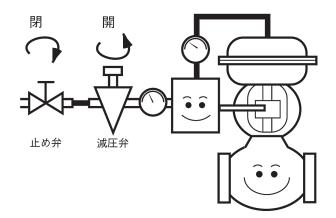
- ② 空気配管はバルブ動作時に圧力低下を起こさない配管径としてください。バルブ動作不良の原因となります。
- 配線工事は、電気設備技術基準に従い電気工事士有資格者が行ってください。
- ケーブルの接続は設備条件に従い実施し、ケーブル仕上がり外径に適合したアダプター(パッキン)を選択してください。
- 空気配管工事にシールテープを用いる場合、ねじ先端より2山はシールテープを巻かないでください。テープ片の詰まりにより、バルブ動作不良の原因となります。
- **②** 空気配管工事に液状パッキン(ねじロック)を用いる場合、配管内部へ液だれに注意してください。バルブ動作不良の原因になります。
- 配線工事は雨天や高湿度の状態を避けて行ってください。コネクタ内や端子箱への水分の浸入 は漏電と発錆の原因となります。

[] 取り扱い上の注意

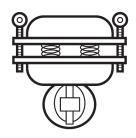
- ポジショナなどの付属機器の蓋部には、シールパッキン(ガスケット)が装着されています。 配線工事の際の紛失に注意してください。
- 空気配管の曲がり部はゆとりを持ったものとし(専用の工具を使用する)、平行する配管はバンドで結束してください。

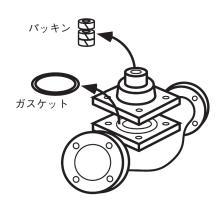

分解組立上の注意

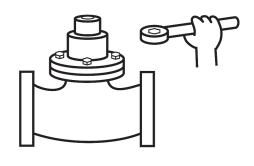
⚠警告


- **(** 作業前にバルブ内の洗浄やガス置換を行ってください。残存する流体による人身事故のおそれがあります。
- 供給空気圧力を与えたままで、空気式操作器の分解を行わないでください。圧縮空気による人身 事故のおそれがあります。
- ボルト・ナットの傷や腐食はバルブ破損の原因となり、人身事故のおそれがありますので新しいものと交換してください。

注意


- **配**管よりバルブを取り外すとき、操作器のアイボルト(アイナット)を使用し吊り上げる場合は 取扱説明書に示す制限質量以下で使用してください。落下のおそれがあります。
- トリム(内弁)の取り外し・組み付けには、専用工具の要否を確認し、準備してください。部品 破損の原因となります。
- **1** 組立の手順を守り、部品、ボルト・ナット類を組み付けてください。動作不良の原因となります。
- 本体部組み付けの際は、新しいパッキンとガスケットを使用してください。古いものの再使用 は流体漏洩の原因となります。




●組立の手順を守る

●パッキン、ガスケットの交換

●規定トルクでの締付け

保守上の注意

⚠警告

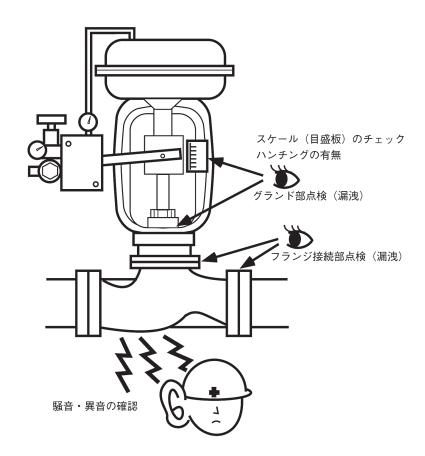
 \mathcal{O}

バルブから流体の漏れを発見した場合には、安全が確認されるまでバルブに近づかないでください。 流体の性状によっては大きな事故や人身事故のおそれがあります。

企注意

0

グランドの点検は日常的に行い、漏れを発見した場合は増し締めを行ってください。


バルブ動作の確認は日常的に行い、ハンチングの有無を目視にて確認してください。

O

運転中に異常な音・振動がないことを目視・聴視にて確認してください。

! 取り扱い上の注意

- 振動や外力を受け、バルブの機能が阻害されるおそれのある場所への設置は避けてください。
- ポジショナなどの付属機器の蓋部には、シールパッキン(ガスケット)が装着されています。 配線工事の際の紛失に注意してください。
- ポジショナなどの付属機器の蓋の固定ねじは紛失しないように注意してください。
- ケーブルねじや電線管のシールは確実に行い、水分が浸入しないようにしてください。
- バルブの分解や保守で発生した古い部品は、産業廃棄物として適切に処理してください。 安易に燃やしたり、廃棄すると環境汚染の原因となります。
- 固定ねじの締め付けはシールパッキン(ガスケット)の装着を確認し、片締めにならないように均等なトルクで締め付けてください。

高圧ガス保安法に定める認定弁

- 1. 当社が製作可能な高圧ガス認定弁適用法規は下記となります。
 - ・一般高圧ガス保安規則
 - ・液化石油ガス保安規則
 - ・コンビナート等保安規則
- 2. 当社で実施した完成検査の認定期限は、『認定試験者試験等成績書』に記載の検査実施日から3年となります。
- 3. ご使用後のメンテナンスに際しては、省令、告示に定める検査を行ってください。
- 4. 日常点検では、省令、告示に定める確認を行ってください。

目 次

第1章	概 要	1
第2章 2-1 2-2	据え付け …	······ 2 ····· 3
2-3 第 3章 3-1	据え付け後の点検保守 ······· 弁本体部 ····· 概 要 ·····	······ 6
3-2 3-3 第4章	分解 組立手順 操作器	7
4-1 4-2 4-3 4-4 4-5 4-6 4-7	概 要 … 操作器の調整 … 弁本体部からの操作器の分離 … 分 解 … 組み付け … 弁本体部への操作器の取り付け … 手動装置 … ###################################	9 11 11 12 13
第5章	ポジショナ	15
5-1 5-2	電気/空気式スマート・バルブ・ポジショナ(形 AVP) 空気式ポジショナ(形 VPR)	
第6章	取付姿勢の変更、作動の変更	
6-1 6-2	操作器の取付位置変更 ····································	
第7章	トラブルシューティング	····· 28
第8章	廃棄について	···· 29
	VFR の標準仕様	
	主要寸法・質量・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
付録 C	主要交換部品	··· C-1

第1章 概要

VFR 調節弁は大別して弁本体部と空気式操作器およびポジショナによって構成されています。

弁本体部は偏心回転形のバルブで、大きな弁容量と高い安定性を特長とし、スラリを含む流体の制御にも適します。

操作器は空気式スプリング形ダイヤフラムモータで、アクチュエータステムがクランプ を回転させます。クランプの回転はバルブステムにトルクとして伝わり、バルブプラグ を信号位置で確実に保持します。

操作器にはオプションとして手動装置をつけることができ、手動装置はリミットストッパとしても利用できます。

ポジショナは空気式力平衝形のサーボ機構を持つ単動ポジショナでバルブステムに直接 組み付けられたカムにより弁開度をフィードバックして適正な位置に弁を追随させます。

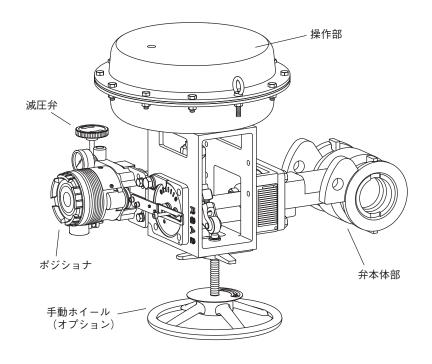


図 1-1 VFR 調節弁の構成

第2章 据え付け

2-1 配管取り付け前の点検

- (1) 所定の仕様であることをネームプレートで確認してください。
- (2) 調節弁(本体部、操作部、付属機器、各部)に損傷がないことを確認してください。
- (3) 配管フランジに損傷がないことを確認してください。
- (4) 操作器には、吊り下げ用アイボルトが組み付いています。 付属品を含めて「表2-1 アイボルト吊り下げ制限質量」以下であることを確認してく ださい。
- (5) アイボルトを使用して調節弁を吊り下げる場合、図2-2のように操作器と弁本体にロープをかけてください。
- (6) 配管は、調節弁を組み付けたとき、強度は十分か表2-1を参考にサポートなどを確認してください。

図 2-1 ネームプレート

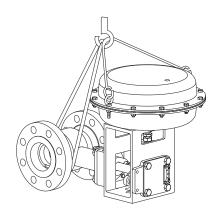


図 2-2 吊り下げ事例

表 2-1 アイボルト吊り下げ制限質量

(単位:kg)

接続口径(B)	操作器	製品質量(一般形上蓋)			アイボルト
		ウエハ接続	フランジ接続		制限質量
3	RSA2D、R	49	定格JIS10K、ANSI150、JPI150	58	80
			定格JIS20K、ANSI300、JPI300	63	
4	RSA2D、R	54	定格JIS10K、ANSI150、JPI150	66	80
			定格JIS20K、ANSI300、JPI300	74	

2-2 配管への取り付け

- (1) 手動装置が付属されている場合、バルブを取り付ける前に手動装置を組み付けてください。組み付け方法は47項を参照してください。
- (2) バルブを取り付ける前にバルブ前後の配管内のスケール溶接チップを取り除いてください。
- (3) 弁本体部の下半分の通しボルトを通して、その上に本体を載せます。
- (4) 配管用ガスケットをセットし、上半分のボルトを通してください。ボルトについては図2-3と表2-2を参照してください。

注、パッキンボックス部分と干渉のあるところは短いボルトで接続します。

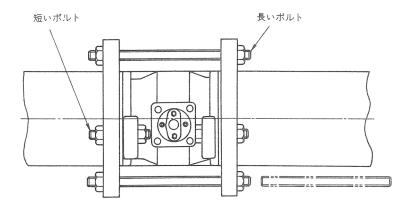


図 2-3 配管への取り付け

表 2-2

ſ	弁サイズ	長いボルト			短いボルト		
		JIS 10K ANSI 150	JIS 20K	ANSI 300	JIS 10K ANSI 150	JIS 20K	ANSI 300
	3B	M16 × 280	M20 × 300		M16 × 110	M20 × 130	
	4B	M16 × 300	M20 × 330		M16×110	M20 × 140	

※ ANSI 150 はなし

- (5) ウエハー形の配管接続にはジョイントシートガスケットを使用してください。 スパイラルガスケットをご使用の場合、下記の接続口径では規格外寸法のガスケットが必要となりますので、外形寸法表のガスケット面内径に合ったガスケットを用意してください。
 - ・接続口径4Bで圧力定格 IIS20K の場合
 - ・接続口径4Bで圧力定格ANSI150/300の場合

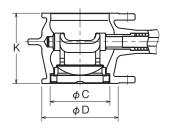


表 2-3 ウエハー形配管接続部寸法

(単位:mm)

接続口径	定格	操作器	K	С	D
4	JIS20K ANSI150/300	RSA2D(R)	194	112	153

- (6) 配管の中心と弁本体の中心が一致するように、また、ボルトが片締めにならないよう均一にボルトを締めてください。
- (7) バルブは必ず弁本体に指示してある矢印の方向に流体が流れるように取り付けてください。
- (8) ガスケット材料は流体の種類、温度を考慮して適切なものを使用してください。
- (9) バルブを据え付けた後、空気配管を行う際、接続前に空気を吹き出して空気配管内のごみや異物を取り除いてください。
- (10)上蓋部の保温や保冷は避けてください。
 - 注. バルブの取付姿勢の変更は操作器の取付位置を変えることで可能です。 詳細は「第6章 取付姿勢の変更、作動の変更」を参照してください。

2-3 据え付け後の点検保守

運転に際して次の確認や作業を行ってください。

- (1) 空気配管に漏れがないかを確認します。
- (2) ダイヤフラムケースのボルト、ナットなどに緩みはないかを確認します。
- (3) バルブを昇温または降温する場合は、徐々に昇温または降温し(100 $\mathbb C$ /1 h以下を目安とする)昇温途中の弁のなど作動は避けてください。
- (4) バルブを低温で使用する場合は、徐々に降温させてください。(50 $\mathbb C$ /以下を目安とする)
- (5) グランドパッキンからの漏れが生じないように、パッキンフランジナットを締めます。
- (6) 配管ガスケットからの漏れがないことを確認し、ボルトナットの緩みを点検します。
- (7) ルブリケータ付きのバルブでグリースを給油するときは、以下の手順で行います。
 - a) ネームプレートでグリース番号を確認します。
 - b) ルブリケータハンドルをしっかり締めます。
 - c) 押しねじを外し、グリースを挿入します。
 - d) ルブリケータハンドルを緩めながら押しねじを回し、グリースを押し込みます。
 - e) グリースがゆきわたるまでb)、c)、d)を繰り返し、最後にルブリケータハンドルを締めます。

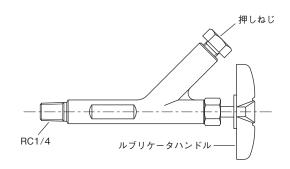


図 2-4 ルブリケータ

! 取り扱い上の注意

• 振動条件は、当社RSA操作器にAVPポジショナを組み付けた場合のポジショナ部での振動を規定しています。

⚠注意

- (KZ03フィルター付減圧弁が本器に組み付けられている場合は、KZ03のドレン部の向きが下向きになるように設置してください。KZ03を垂直(ドレン部下向き)に取り付けられない場合は、本器から取り外して使用ください。

第3章 弁本体部

概要 3-1

図3-1は構造を示す断面図です。VFR調節弁は偏心回転形のバルブです。本体部はボン ネット一体形の本体と、プラグ、シートリングなどのトリム部から構成されています。

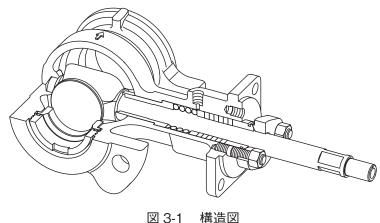
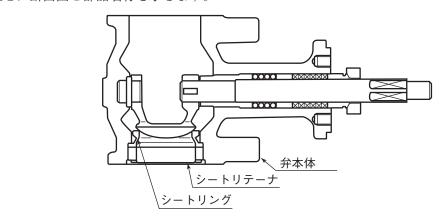



図3-2に断面図と部品名称を示します。

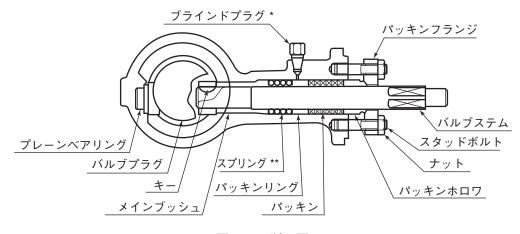


図 3-2 断面図

- * ルブリケータを使用しない場合です。
- ** ルブリケータを使用する場合はパッキンとなります。

解 3-2 分

弁本体部の分解は「操作器」の分解の項に従い操作器を分離して後以下の手順で行います。

- (1) パッキンフランジを締めているナットを外します。
- (2) パッキンフランジ、パッキンホロワを外します。
- (3) バルブステムを引いて、他のグランド部品(キー、メインブッシュ、スプリング、パッ キンリング、パッキン)と共に引き出します。
 - 注. バルブステムの引き抜きが困難な場合は次の方法で分解してください。
 - a. パッキンを数枚取り出してください。
 - b. パイプとスタッドボルト、ナット、ワッシャを用いて図3-3のようにバルブ ステム先端のねじを使用して、分解してください。(バルブステム端面にカ ムホルダーを取り付けるときには、ロック剤を使用してください)

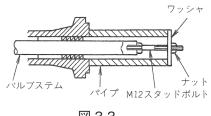
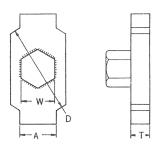



図 3-3

- (4) プラグをプレーンベアリングから外します。
- (5) 出口側からプラグを取り出します。
- (6) 専用工具を用いてシートリテーナを反時計方向に回して外します。専用工具は図3-4 を参照してください。
- (7) シートリングを外します。分解が終わったら、すべての部品について点検してくだ さい。必要な場合は新品と交換してください。

	А	Т	D	W
3B	19.5	10	66	24
4B	19.5	10	85	24

図 3-4 専用工具

3-3 組立手順

- (1) バルブプラグを弁本体内に挿入し、プレーンベアリングに取り付けます。
- (2) メインブッシュにバルブステムを通し、バルブステムのキー溝にキーを取り付けま す。(図3-5参照)
- (3) バルブステムを本体に通し、バルブプラグのキー溝にキーを通します。(図3-5参照)
- (4) グランド部品を組み付けます。ルブリケータのない場合とある場合はパッキンに注 意してください。
 - 組立手順は図3-6を参照してください。
 - 注、パッキンの切り口は交互になるように組み付けてください。

- (5) バルブプラグをあけた状態でシートリングを組み付け、シートリテーナをねじ込み手でしまるまで締めます。
 - 注. シートリングに液状パッキンを塗布してください。(図3-7) シートリテーナのねじ部分には焼付防止剤を塗付してください。
- (6) バルブステムを回し、バルブプラグをシートリングに押しつけるようにします。 そして、この状態でシートリテーナを専用工具で固く締めつけます。

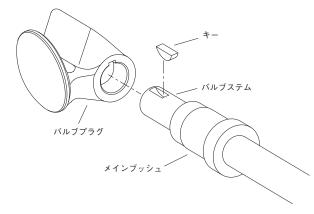


図 3-5 プラグとステム

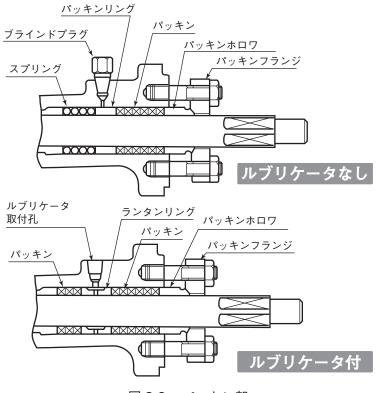


図 3-6 パッキン部

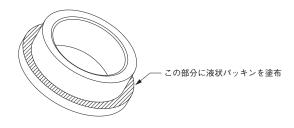


図 3-7 シートリング

第4章 操作器

4-1 概要

RSA2操作器は回転形調節弁専用の空気式スプリング型ダイヤフラムモータで、空気圧力とスプリング反力とのバランスで所定の開度位置を保ちます。

比例制御用には専用のポジショナを組み付けることができます。

操作器の手動装置は、ハンドル操作でモータに働き、左回し*で操作器ステムを下に押し下げる構造になっています。(*方向指示板側で)

4-2 操作器の調整

弁作動にずれがある場合や、分解組み立ての後に行います。手動装置のホイールがローラから十分に離れるまでいっぱいに回してから行ってください。

- (1) 操作器に減圧弁を通して空気圧を配管します。
- (2) ターンバックルのロックナットをゆるめてねじ戻します。ねじは右ねじおよび左ね じです。(図4-1®@参照)
- (3) 減圧弁を操作し、正作動の場合はスプリングレンジ上限値に、逆作動の場合はスプリングレンジ下限値に空気圧をセットし操作器に与えます。
- (4) スパナをターンバックルの六角部にかけて回し、回転が堅くなるとともに、クランプの軸まわりの回転移動がなくなるまで、次の方向に回します。
 - 正作動弁のときはターンバックルのねじ部の露出量が長くなる方向に
 - 逆作動弁のときはターンバックルのねじ部の露出量が短くなる方向に
- (5) そのままの状態で指針を目盛板のSの目盛線に合わせます。
- (6) ターンバックルのロックナットを堅く締め付けます。
- (7) ポジショナの調整については「第5章 ポジショナ」の項を参照して行ってください。

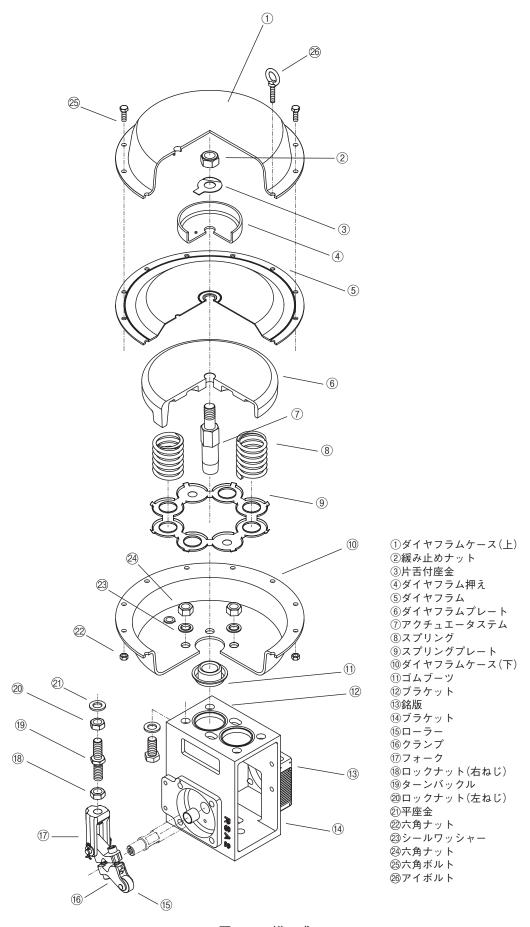
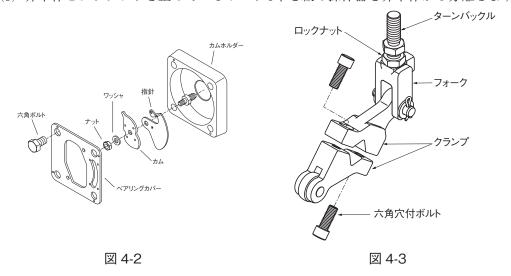



図 4-1 構成

4-3 弁本体部からの操作器の分離

- (1) 「第5章 ポジショナ」を参照し、まずポジショナを操作器から分離します。
- (2) ポジショナを取り外したらナットを外してバルブステム先端についているカムと指針を取り外します。(図4-2参照)(VPRポジショナの場合)
- (3) 逆作弁の場合はアクチュエータステムに初期締め上げ分の力がかかっていますので、 アクチュエータステムとフォークのロックナットを緩めてから、アクチュエータス テムをねじ戻して力を解除します。(*回り止めを平にして)
- (4) フォークとバルブステムを連結しているクランプを6角穴付ボルトを緩めて分解します。(図43参照)
- (5) 弁本体とブラケットを止めているボルト4本を緩め操作器を弁本体から分離します。

4-4 分解

部品の交換などで分解を必要とする場合は次の手順で行います。(図41を参照)分解した部品(とくにダイヤフラムとダイヤフラムプレート)は傷をつけないように注意してください。

- (1) ダイヤフラムケース(上)のボルト、ナットを均等に緩め、ダイヤフラムケース(上) を取り外します。最後にアイボルト2本を取り外します。
- (2) 回り止めロックナットを緩めアクチュエータ先端ねじ部に組み付けられたフォークを外します。
- (3) ダイヤフラムを丁ねいに上に引き出します。
- (4) 次にダイヤフラムプレートの外周部を保持しながらダイヤフラム上部の緩み止め ナットを外します。
- (5) フォークとクランプを分解する場合は平座金を取り外して図4-4のように分解してください。

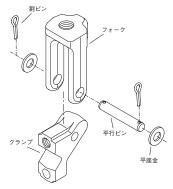


図 4-4

4-5 組み付け

弁作動により組付姿勢が異なりますので組み付ける前にネームプレートで正作動弁か逆 作動弁かの区別を確認してください。

組み付けは次の手順で行います。

- (1)「分解」の項の逆順で組み付けます。
- 注.1 フォークとクランプの組み付けはフォークの凸面部の向きに注意し、図4-5のよう に組み付けます。
- (2) ダイヤフラムケース(上)をのせ、ボルト・ナットで均等にしっかり締めつけてください。(図4-6)
- (3) クランプをバルブステムに固定する場合はその前にターンバックルとフォークロックナットのねじ部の間隔が約7 mmになるようにしてください。(図4-7)
- (4) 弁本体への組み付けは「44分解」の項の逆順に行います。(正逆の区別は図45を参照)

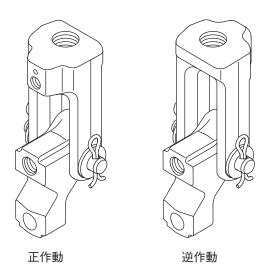
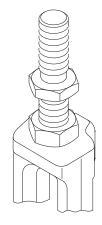
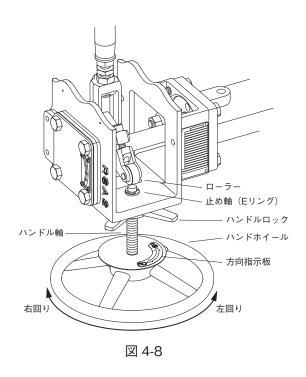


図 4-5

図 4-6




図 4-7

4-6 弁本体部への操作器の取り付け

前述の「4-3 弁本体部からの操作器の分離」に基づき、その逆順で行います。なお、組み付け後は「4-2 操作器の調整」に従って調整を行ってください。

4-7 手動装置

操作器の手動装置は通常の弁の手動操作に使用する以外にリミットストッパとして使用できます。

4-7-1 手動装置の組み付け

付属されている手動装置を次の手順で組み付けてください。

- (1) ハンドル軸に組み付いている止め輪(Eリング)と座金を外します。
- (2) 操作器ブラケット底面のM16用ねじ穴にハンドル軸をねじ込みます。 ※M16用ねじ穴は操作器正作動用と逆作動用の2つあります。ハンドル軸をマニュ アル用ローラ(図4-8)に接触する方へねじ込んでください。 その際、操作器ブラケットから15 mm程度確認できる位置までねじ込んでください。
- (3) ハンドル軸の先端から座金を挿入します。
- (4) 止め輪(Eリング)をハンドル軸の止め輪用の溝に組み付けます。

4-7-2 自動運転の際の扱い

- (1) ハンドルロックを右に(方向指示板を見下す位置で)回し、ロックを解除します。
- (2) ハンドホイールを(1)と同様に右に回してハンドル軌をいっぱいに引き出します。
- (3) 先に解除したハンドルロックを左に回してハンドルをロックします。
- (4) この状態で自動運転を行います。

4-7-3 手動操作

まずポジショナのバイパスコック (5-2-3-1参照) を ON の状態にします。 ハンドルロックを解除し、ハンドホイールを方向指示板側から見て左に回すと、正作動 弁の場合は弁を閉じる方向に、逆作動弁の場合は弁を聞く方に作動します。 弁の手動操作は方向指示板に従って行い、任意の位置でハンドルロックをします。 手動操作から自動運転に入る場合は必ず 4-7-2 項に従ってください。

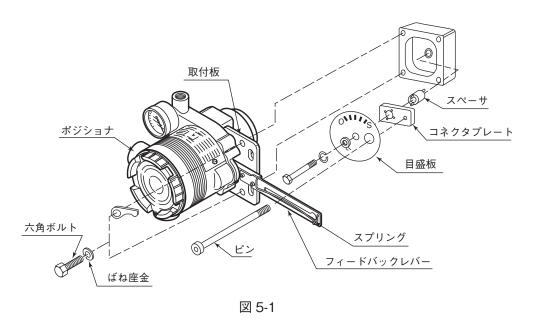
4-7-4 リミットストッパとしての使用

正作動弁の場合は最大弁開度、逆作動弁の場合は最小弁開度のリミットストッパとして使用できます。

- (1) ハンドルロックを解除し、ハンドホイールを方向指示板に従って回し、希望の弁開度位置にセットします。
- (2) ハンドルロックをします。リミットストッパを解除して自動運転を行う場合は4-7-2 項を参照してください。

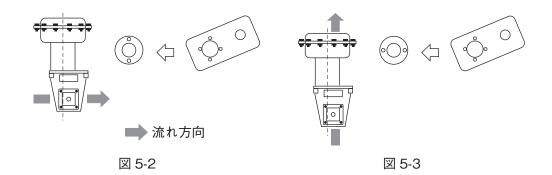
第5章 ポジショナ

5-1 電気/空気式スマート・バルブ・ポジショナ(形 AVP)


5-1-1 概要

スマート・バルブ・ポジショナ 300/700 シリーズは、 $4\sim20$ mAの信号ラインに接続できる、スマート化されたバルブ・ポジショナです。あらゆる調整をコミュニケータを使用して電気的に行うため、入力信号と調節弁の弁開度との関係の任意設定ができます。また、スプリット・レンジなどの特殊設定も容易です。

5-1-2 操作器への着脱


5-1-2-1 取り外し

- 【1】ポジショナの空気配管を外します。
- 【2】六角ボルト(M12)をLレンチで緩めてブラケットを外します。
- 【3】六角ボルト(M10)をLレンチで緩めてフィードバック・ピンを指針、コネクタ・プレートを外します。
- 【4】ブラケットと本体の六角ボルトを緩めるとポジショナを取り外すことができます。

5-1-2-2 取り付け

- 【1】スペーサをスプリングの位置に合わせて弁軸に挿入します。
- 【2】コネクタプレート流れ方向に注意して(図5-1参照)フィードバックピンと共にブラケットに取り付けます。
- 【3】六角ボルト(M10)を締めてコネクタプレートに指示盤を取り付けます。
- 【4】六角ボルト(M12)を締めて取付板に指針を取り付けます。
- 【5】ポジショナの空気配管を取り付けます。

5-1-3 ポジショナの調整

下記専用取扱説明書を参照願います。

スマートバルブポジショナ
 (形AVP300/301/302(一般形))(形AVP200/201/202(分離形)) No.CM1-AVP300-2001
 (形AVP701/702) No.CM1-AVP702-2001

(形AVP770/771/772/780/781/782/790/791/792) No.CM1-AVP772-2001

スマートバルブポジショナ(フィールドバス対応) (形AVP703)No.CM1-AVP703-2001

5-1-4 ポジショナの保守

下記専用取扱説明書を参照願います。

スマートバルブポジショナ(フィールドバス対応) (形AVP703)No.CM1-AVP703-2001

5-2 空気式ポジショナ(形 VPR)

5-2-1 概要

ポジショナは、RSA操作器に組み付いており、調節計からの空気圧信号に対応した弁開度を敏速かつ正確に設定します。

本器の主要構成は下記のとおりです。

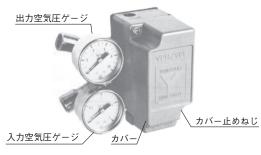


図 5-4 正面

5-2-2 動作原理

ポジショナは図5-5の回路のような力平衡方式で調節計からの信号に対応した弁開度を決める働きをします。ブロック線図と動作原理図を示します。

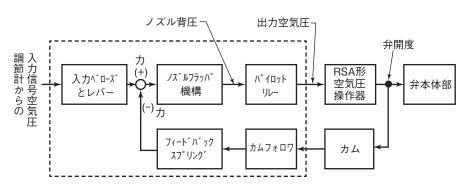


図 5-5 ポジショナのブロック線図

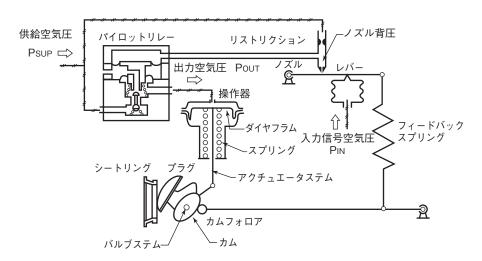


図 5-6 動作原理図

5-2-3 バイパス

5-2-3-1 バイパスの働き

ポジショナには下部に供給空気圧バイパス機構が付いています。図5-7のようにバイパスコックを回すことにより、ONの"ポジショナ運転の状態"とSUPの"供給空気圧バイパスの状態"に切り換えることができます。

SUPの状態では、供給空気圧はパイロットリレーを通らず、直接操作器に出力されます。 従って、バイパスコックをSUPの位置にすることにより次の使い方ができます。

- 【1】供給空気圧を変えることによって弁開度を自由に変えることができます。
- 【2】パイロットリレーは供給空気圧、出力空気圧から切り離されるので、入力信号空気圧 を遮断するだけでパイロットリレーの点検、保守ができます。

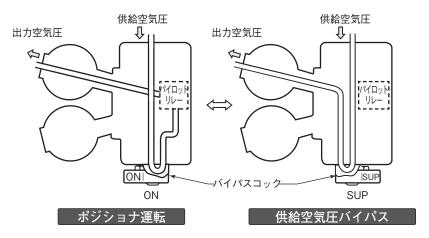


図 5-7 バイパスコックの働き

5-2-3-2 バイパスコックの取り付け

ガスケットの交換などのために、バイパスコックを取り外した場合は、バイパスコックのガスケット面にシリコングリースを軽く塗布した上で、図5-8のように組み付けます。新しいガスケットは白色面を外側にして組み付け、十字穴付小ねじは \oplus ドライバーで固く締めつけた後、 $1/3 \sim 1/4$ 回転程度緩めておきます。

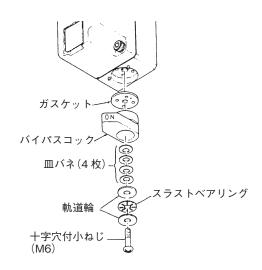


図 5-8 バイパスコックの取り付け

5-2-4 カム特性の選定

弁特性を変更する際は以下のようにカムを選定し、使用してください。(取り付け、調整についてはそれぞれの項を参照してください)

5-2-4-1 カム特性

ポジショナに対するカムは、1枚でリニアまたはイコール・パーセントの特性を満足します。

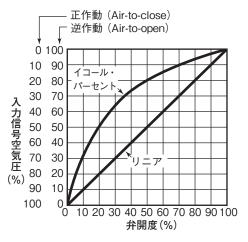


図 5-9 カム特性

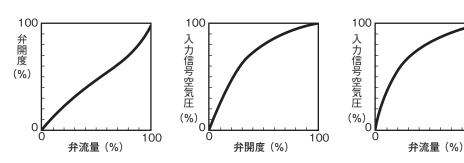
5-2-4-2 カムの使用

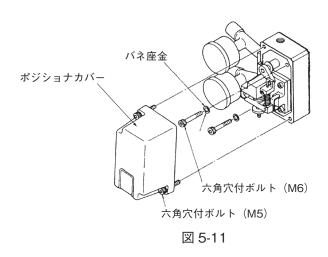
流量特性がリニア特性の場合に、プロセスの条件からイコール・パーセント特性が必要なときには、カム特性としてイコール・パーセントを選んで、簡単にイコール・パーセント特性のバルブに変えることができます。

5-2-4-3 カム特性の選定方法

カムの選定は次の手順に従います。

- 【1】調節弁が正作動(AIR-TO-CLOSE)か逆作動(AIR-TO-OPEN)か確認します。
- 【2】図5-10を参照し、プロセスに適する流量特性の得られるカム特性を選定します。




図 5-10 カム使用例 フローウィングバルブ(フルポート・逆作動)の場合

100

5-2-5 操作器への着脱

5-2-5-1 取り外し

- 【1】ポジショナの空気配管を外します。
- 【2】図 5-11 に示す六角ボルト (M5) 2本をLレンチ (4 mm) で緩めてポジショナカバーを外します。
- 【3】内部にある六角穴付ボルト (M6) 2本をLレンチ (5 mm) で緩めるとポジショナを取り 外すことができます。(図5-11参照)

5-2-5-2 取り付け

取り付け後の調整方法については[5-2-6 ポジショナの調整]の項を参照してください。

【1】操作器仕様およびカム特性の確認

ネームプレートにより次の3点を確認します。

- a)操作器作動の正・逆 (AIR-TO-CLOSEかAIR-TO-OPENか)
- b) 操作器スプリングレンジ
- c) カム特性
- 【2】指針およびカムの取り付け
 - a) 操作器に空気配管を行い、表に従って空気圧を与えます。 このとき、操作器作動の正・逆によらず弁は閉となります。

(例:操作器が逆作動、スプリングレンジが80 ~ 240 kPaのときは80 kPaの空気 圧を操作器に与えます)

操作器作動	操作器空気圧
正作動	操作器スプリングレンジの上限
逆作動	操作器スプリングレンジの下限

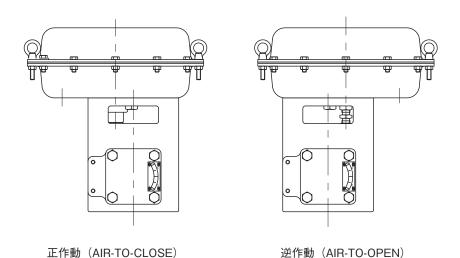
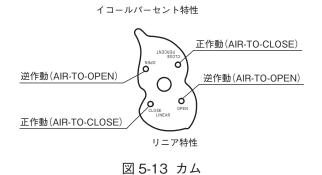



図 5-12 操作器作動

- b) カムホルダーのおねじ部に指針とカムを取り付けます。
- c) 図5-13を参照して、操作器作動とカム特性に応じたカムの合わせ穴を選び、指針のボスにはめ込みます。

d) 図5-14のように、指針の直接部がベアリングカバー上の仮想直線に対して最も平行になるように指針とカムホルダーのセレーションをかみ合わせて、バネ座金とナット(M8)で止めます。

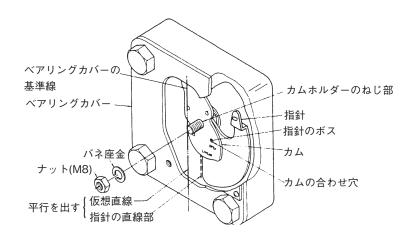


図 5-14 指針およびカムの取り付け(正動作・リニアの場合)

e)操作器の空気圧を抜き、空気配管を外します。

【3】ポジショナの取り付け

- a) 六角穴付ボルト (M5) 2本をLレンチ (4 mm) で緩めて、ポジショナカバーを外します。
- b) バイパスコックが下になる姿勢で、バネ座金を用いた六角穴付ボルト(M6) 2本を Lレンチ(5 mm)で締めて、ポジショナをベアリングカバーに取り付けます。

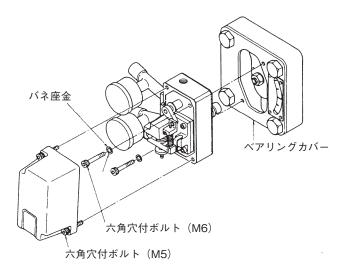


図 5-15 本器の取り付け

【4】空気圧配管の取り付け

ポジショナ側面に3カ所の接続口(PT1/4めねじ)が設けられていますので、記号(IN、SUP、OUT)に従ってユニオンジョイントと空気圧配管を接続します。

注:接続ねじにはポジショナの空気パスの目詰まりを避けるため、シールテープは使 わず、液状パッキンを塗布するようにします。

IN: 調節器からの入力空気圧

SUP: 供給空気圧

OUT:操作器への出力空気圧

5-2-6 ポジショナの調整

調節弁に組み付けて出荷する場合は調整されていますが、交換したような場合には次の 順序で調整してください。

- 【1】バイパスコックをONにします。
- 【2】ポジショナの入力空気圧レンジ、供給空気圧、操作器スプリングレンジをネームプレートにより確認します。
- 【3】ポジショナに供給空気圧を与えます。
- 【4】以下、操作器作動の正・逆の別に、入力空気圧レンジが $20 \sim 98~\mathrm{kPa}$ の本器を例にとって説明します。
- ※ 1. 入力空気圧レンジが20~60 kPaのときは本文中で100 kPaを60 kPaに、 $60\sim98$ kPaのときは20 kPaを60 kPaにそれぞれ読み換えてください。

[逆作動 (AIR-TO-OPEN) の場合]

- 【5】入力空気を20 kPa にセットします。
- 【6】ゼロ調整ノブを回転させ、本器の出力圧が操作器スプリングレンジの下限になるよう にします。このとき、指針はSを示します。

(例:操作器スプリングレンジが80 ~ 240 kPaのときは本器の出力圧を80 kPaにします)

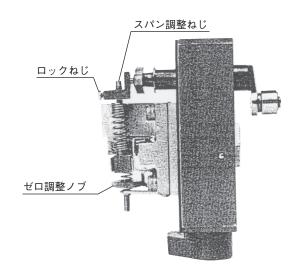


図 5-16 調整箇所

- 【7】入力空気を80 kPaにセットします。
- 【8】○ドライバーでロックねじを緩めてスパン調整ねじを回転させ、指針が0を示すよう にします。

[正作動(AIR-TO-CLOSE)の場合]

- 【5】入力空気を80 kPaにセットします。
- 【6】ゼロ調整ノブを回転させ、本器の出力圧が操作器スプリングレンジの上限になるよう にします。このとき、指針はSを示します。

(例:操作器スプリングレンジが80 ~ 240 kPaのときは本器の出力圧を240 kPaにします)

- 【7】入力空気を20 kPaにセットします。
- 【8】○ドライバーでロックねじを緩めてスパン調整ねじを回転させ、指針が0を示すようにします。
- 【9】(5】~【8】を数回繰り返し、調整を行います。
- 【10】調整後はスパン調整ねじのロックねじを○ドライバーで再び締め付けておきます。

5-2-7 ポジショナの保守

5-2-7-1 使用に際しての注意事項

- 【1】供給空気はフィルターを通した清浄な空気を使用してください。供給空気中の異物がノズルやパイロット・リレーに詰まり、動作不良の原因となることがあります。
- 【2】屋外使用の場合は、雨滴の侵入を避けるために、本器カバーが必ず正立するよう取り付けてください。

5-2-7-2 作動不良時の処置

作動不良が生じたときは、「表5-1 トラブルシューティング」に従って処置してください。

5-2-7-3 リストリクションの掃除

リストリクションに異物が詰まったりして本器の作動が異常になったときは、図5-17のように、六角穴付ボルト (M5) 1本と (M3) 1本をそれぞれLレンチ (4 mm、2.5 mm) で緩めて、スペーサーを外して 0.3ϕ の芯線で掃除します。組み付けに際しては、バイアススプリングを必ず装着してください。

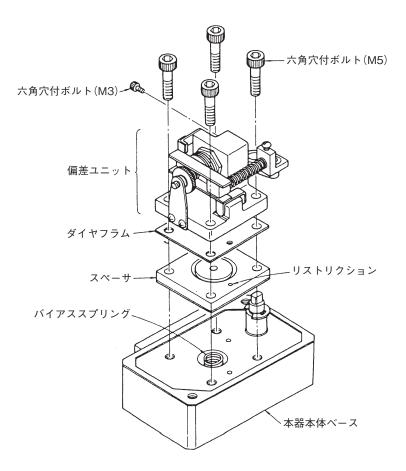


図 5-17 パイロットリレーの分解

表 5-1 トラブルシューティング

作動不良の状態	原図	処 置
出力空気圧が出ない	1. 調整不良	「5-2-6 ポジショナの調整」の項参照
	2. 供給空気圧設定不良	「5-2-6 ポジショナの調整」の項参照
	3. リストリクションの詰まり	「5-2-7-3 リストリクションの掃除」の項参照
	4. カムの取付不良	「5-2-5 操作器への着脱」の項参照
	5. ベローズの不良	*注
出力空気圧が下がら	1. 調整不良	「5-2-6 ポジショナの調整」の項参照
ない	2. ノズルの詰まり	*注
	3. バイアススプリング	「5-2-7-3 リストリクションの掃除」の項参照
	4. バイパスコック	確実にONにする
	5. カムの取付不良	「5-2-5 操作器への着脱」の項参照
リニアリティ不良	1. 調整不良	「5-2-6 ポジショナの調整」の項参照
	2. カムの取付不良	「5-2-5 操作器への着脱」の項参照
ヒステリシスが大きい	1. 締付部分の緩み	緩んだ箇所を締め付ける
	2. ベローズの不良	*注
作動が遅い	1. バイパスコック	確実にONにする
	2. ベローズの絞りの詰まり	*注
ハンチングが起こる	1. 弁本体部・操作器のフリクション	弁本体部・操作器を点検する

^{*}注:偏差ユニットの分解が必要となりますが、この部品の分解は当社工場または、サービスステーション 以外で行うことは好ましくありませんので避けてください。

第6章 取付姿勢の変更、作動の変更

VFR調節弁は部品の変更や追加なしに配管への取付姿勢や作動の変更ができます。

6-1 操作器の取付位置変更

操作器は図6-1のように4種の取付位置を選択できます。なお標準取付位置は図6-1の1、5の位置になっています。標準以外の取付位置の場合はダイヤフラムケース(下)の排気口に雨水対策用キャップの組み付けが必要となります。

- (1) 作業に入る前に「第4章 操作器」を参照し、操作器を本体部から分離します。
- (2) 希望の位置に操作器を合せ操作器と本体部を組み付けます。このとき、クランプのローラはハンドル軸上に正しく組み付けてください。
- (3) 「第4章 操作器」の4-2項を参照し調整を行ってください。本器に関しては「第5章 ポジショナ」の5-2-6項を参照して調整してください。

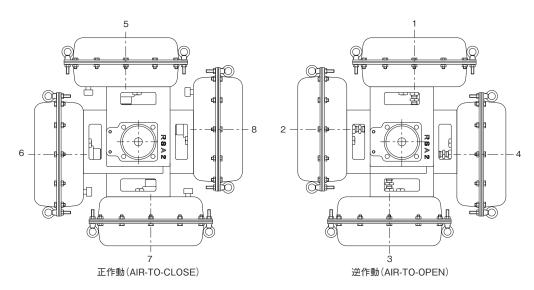


図 6-1 取付姿勢

6-2 弁作動の変更

- (1) クランプ用六角穴付ボルトを外し、バルブステムからクランプを外します。
- (2) 図44を参照しクランプとフォークを組み替えます。
- (3) $\lceil 4.4 \, \mathcal{G} \rceil$ 解」の手順に従って操作器を分解し、図6-2のようにダイヤフラムケース(下)を組み替えます。
- (4) ハンドホイールの方向指示板を D、R(D:正作動弁、R:逆作動弁) に注意して組み替えてください。(図 6-3 参照)
- (5) 組み付けは(1) ~ (4)の逆順で行ってください。
- (6) 正逆組み替え時に、ダイヤフラムケース(下)の配管接続口が逆の位置に移動します ので、(図6-2参照)注意してください。

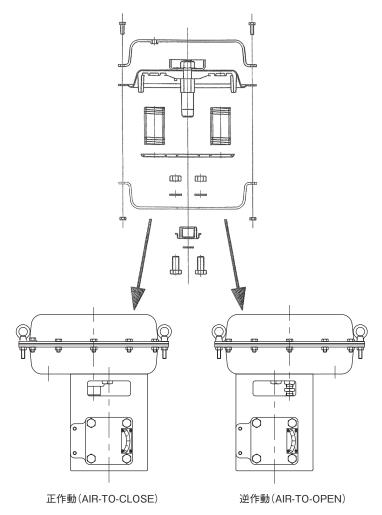


図 6-2

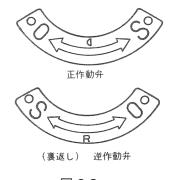


図 6-3

第7章 トラブルシューティング

以下に運転時に発生が予想されるトラブルについて説明します。

表 7-1

現象	原因/確認/対策
弁の動作が不安定	
・全閉近くでハンチングする	・弁の容量が大きい(Cv値を低くする)
	・単座弁の場合、流し方向が逆になっていないか
・供給空気圧が変動する	・他のラインで空気を使いすぎていないか(配管容量、 絞り、空気圧供給容量などに関係)
	・減圧弁の不良
・信号圧が変動する	・調節計のチューニング不良(比例帯などの設定値を変更する)
	・調節計に異常な出力変動はないか
・信号が一定でもハンチングする	・本器自体の出力のハンチング(本器の点検、修理、交換)
	・流体圧の変動の影響を受けている(操作器のパワー不 足。操作器を大形に交換する)
弁が振動する	
・どの開度でも振動する(異常音が出る)	・配管が振動していないか(サポート強化)
	・振動源が他にないか
	・プラグおよびガイド部の摩耗(部品分解点検)
・ある開度だけで振動する(音が出る)	・流体条件が変わった(制限オリフィスやCv値の変更)
弁の動作がにぶい	・空気配管のもれ
弁が動作しない	・操作器から空気のもれ
	・プラグのガイドに付着物がつまっている
	・グランドパッキンの硬化(ヒステリシスの増大)
	・ポジショナの不良(別系統の空気圧で直接動作させて みる)
グランド部からの流体のもれ	・パッキンフランジがゆるんでないか
	・グリースは十分か
	・弁軸に傷はないか
弁開度が閉の状態にもかかわらず、	・操作器部における空気圧のもれ
弁下流側への流体のもれが多い 	・供給空気圧または大気圧を操作器に与えてみる(空気 源、本器をチェックする)
	・弁閉度が実際に0になっているか(開度確認)
	・プラグシートリングの腐食、侵食
	・ガイド部のカジリ

状況に応じ部品交換などの対策を講じてください。

第8章 廃棄について

本製品が不要になったときは、産業廃棄物として各地方自治体の条例に従って適切に処理してください。また、本製品の一部または全部を再利用しないでください。

付録A VFRの標準仕様

本体

形式: ストレート形

接続口径: 3B、4B

接続規格: JIS10K、20K、ANSI150、300、JPI150、300

ウエハー形RFまたはフランジ形RF

材料 本体、トリム材料の組み合わせと使用温度範囲は表 A-1 を参照してください。

上蓋: 本体一体形(-60℃から+350℃まで)

グランド形式: ボルテッドグランド形

パッキン、グリース:グリースなし;PTFEヤーンパッキン使用の場合

グリースあり;黒鉛パッキン、その他を使用の場合

トリム

バルブプラグ: 単座形ウイング付オープンヨークプラグ

シートリング: クランプ形シートリング

材料: 本体、トリム材料の組み合わせと使用温度範囲は表 A-1 を参照してください。

操作器

形式: スプリング形ダイヤフラムモータ

作動: 正作動、逆作動

ダイアフラム材料:ナイロン基布入りクロロプレンゴム

スプリングレンジ:80~240 kPa(RSA1、2形)

注) スプリングレンジと供給空気圧力は弁サイズにより異なります。

供給空気圧力: $340 \sim 400 \text{ kPa}$

空気配管接続: Rc1/4

周囲温度範囲: -30 ~ +70 ℃

弁作動

正作動(正作動形操作器を組み合わせます)

逆作動(逆作動形操作器を組み合わせます)

標準組付付加機構

空気式VPRまたは電空式AVPポジショナ

付加選択機構

フィルタ付減圧弁、手動ハンドル、リミットスイッチ、電磁弁、開度発信器、ボリュームブースタ、 エアロック弁、その他

付加選択仕様

- ・多孔減圧プレート(内臓形または外付方)
- ・流量特性検査
- ・材料検査(ミルシート)
- ·非破壞検査
- ·蒸気検査
- ·低温検査
- ·禁銅仕様
- ·禁油、禁水処理
- ・SUS304製外気露出ボルト、ナット
- ・高圧ガス保安法認定
- ・ヨーク材料 (SCPH2) ※
- ・特殊空気配管とジョイント
- ・防砂、防じん対策
- ・塩害対策
- ·寒冷地仕様
- ·熱帯地仕様
- ・真空サービス
- ・※ RSA2 操作器のヨーク材料は炭素鋼 (A216WCB) が標準です。

表A-1 本体、トリム材料組み合わせおよび使用温度範囲(℃)

部品					材料							
弁本体 SCPH2				SCS13A SCS14A								
	バルブプラグ	SCS24 SCS14 CoCr-A盛			SC	S14 CoCr	-A盛	SC	S14 CoCr	-A 盛		
	シートリング	SUS630	SUS316*4 PTFEシート	SUS316	SUS316*4 PTFEシート	SUS316	SUS316 CoCr-A盛	SUS316*4 PTFEシート	SUS316	SUS316 CoCr-A盛	SUS316*4 PTFEシート	
	シートリテーナ	SUS630					SUS316					
	プレーンベアリング	SUS440C*1*2						SUS316	CoCr-A盛			
	メインブッ シュ				SUS316 CoCr-A盛							
	バルブステム						SUS316*2					
リム	キー		SUS	630		CoCr-A						
	スプリング					SUS316						
	パッキンリング					SUS	316					
	パッキン		PTF	Ξヤーンパ	ッキン、黒針	沿成型パッ	キン+炭素	■繊維アダプ	゚ターパッキ	Fン* ³		
	パッキンホロア					SUS	316					
	パッキンフランジ		SUS304									
	ボルト・ナット				SCM3	/SUS304	(パッキン約	帝付用)				
	ガスケット			うず巻き形	ガスケット'	*5(シート!	リングとシ	ートリテース	ナ間に装着)		
温度	 度範囲		-5~-	+ 350°C		-60 ∼+350°C						

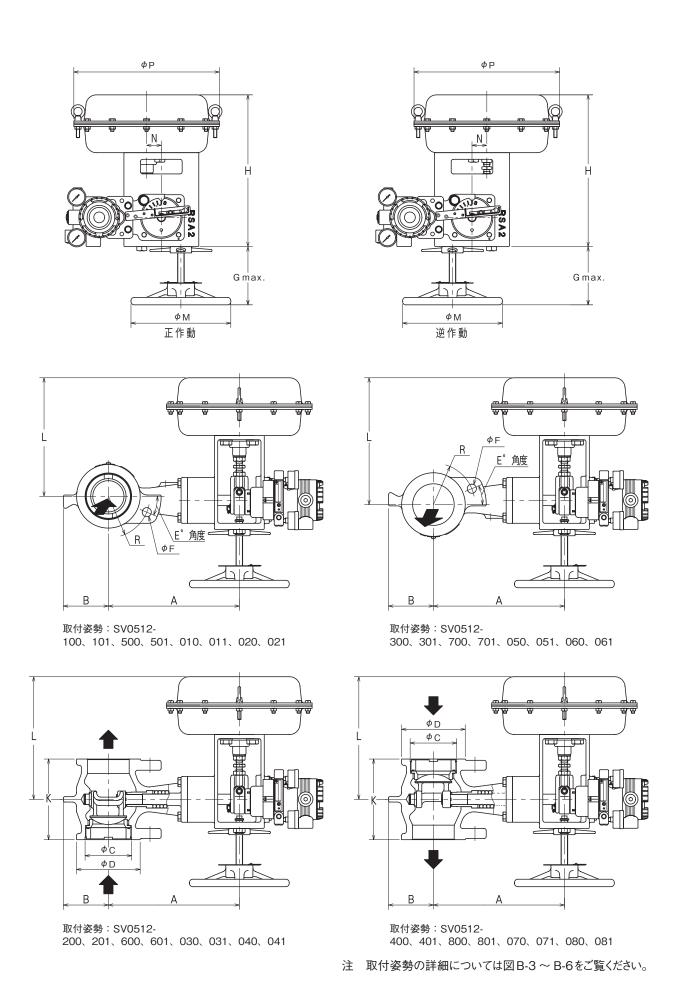
- *1 流体サービスがガス、蒸気の場合、SUS316CoCr-A盛となります。
- *2 流体サービスが熱媒の場合、SUS316CoCr-A盛となります。
- *3 流体サービスが熱媒の場合、黒鉛成型パッキン+炭素繊維アダプターパッキンとなります。
- *4 SUS316PTFE シート (グラス入り) 付の流体温度は、標準用 $-30\sim+200$ $^{\circ}$ 、低温用 $-60\sim-31$ $^{\circ}$ となります。

÷	\overline{a}
~	J

		温度範囲	ガスケット材料
_	般	-60°C≦t≦+350°C	SUS316無機質紙フィラー
禁	油	-60°C≦t<+230°C	SUS316PTFEフィラー
示	/ H	+230°C≦t≦+350°C	SUS316黒鉛フィラー

付録B 主要寸法・質量

調節弁の外形寸法・質量を表B-1, 2に示しますが、付加選択仕様の追加により設置上の寸法と質量が変わりますので注意が必要です。


表B-1 ウェハ形接続

単位:mm

接続口径 (B)	定格	操作器 形式	К	А	В	φC*	φD*	E	φF	R	φΡ	Н	G	φΜ	N	質量 (kg)	
	JIS 10K		23	19	75												
	JIS 20K							23	23	80							
3	ANSI 150	RSA2D	165	312	70	87	128	45	19	76	350	365	150	240	36	49	
	ANSI 300	RSA2R	103	312	/0	07	120	23	22	84	330	303	130	240	30	49	
	JPI 150								45	19	76						
	JPI 300							23	22	84							
	JIS 10K							23	19	88							
	JIS 20K							23	23	93							
4	ANSI 150	RSA2D	194	315	108	112	153	23	19	92	350	365	150	240	36	54	
4	ANSI 300	RSA2R	194	315	100	112	153	23	22	100	350	303	150	240	30	34	
	JPI 150							23	19	92							
	JPI 300							23	22	100							

注 面間寸法(K)はISA、S75.04に適合します。また、SAMA PMC23.3Aに準じます。(Scientific Apparatus Makers Association)

接続口径 (B)	配管取付姿勢(SV0512-□□□)	L
	100、101、500、501、010、011、020、021	287
3	200、201、600、601、030、031、040、041	295
	300、301、700、701、050、051、060、061	303
	400、401、800、801、070、071、080、081	295
	100、101、500、501、010、011、020、021	285
4	200、201、600、601、030、031、040、041	295
4	300、301、700、701、050、051、060、061	305
	400、401、800、801、070、071、080、081	295

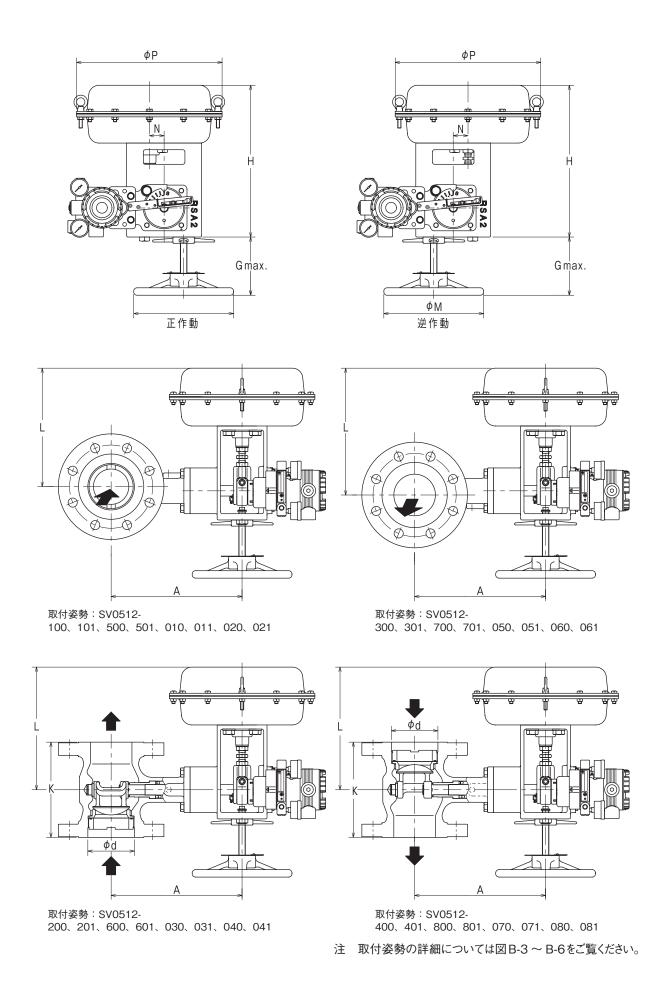
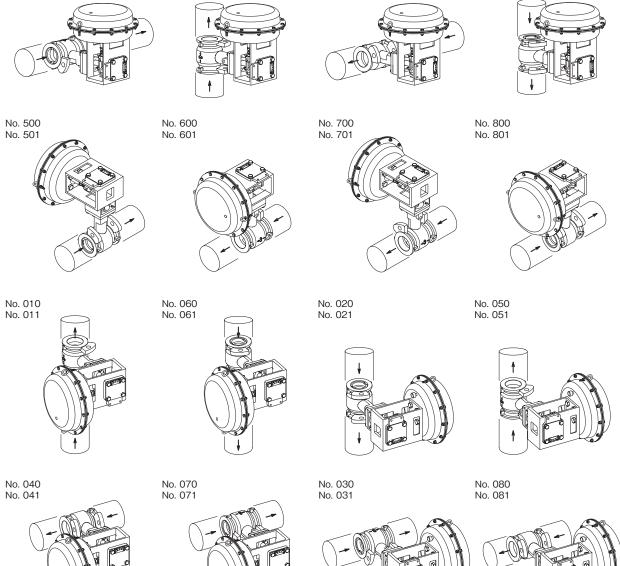

図B-1 ウエハ形面間および外形寸法

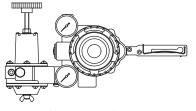
表 B-2 フランジ形接続 単位: mm

接続口径 (B)	定格	操作器 形式	К	φd	А	φΡ	Н	G	φΜ	N	質量 (kg)
2	JIS 10K、ANSI 150、JPI 150	RSA2D	216	87	312	350	365	150	240	35.5	58
3	JIS20K、ANSI 300、JPI 300	RSA2R	210	07	312	330	303	130	240	33.5	63
4	JIS 10K、ANSI 150、JPI 150	RSA2D	229	112	315	350	365	150	240	35.5	66
4	JIS20K、ANSI 300、JPI 300	RSA2R	229	112	315	330	303	130	240	33.5	74

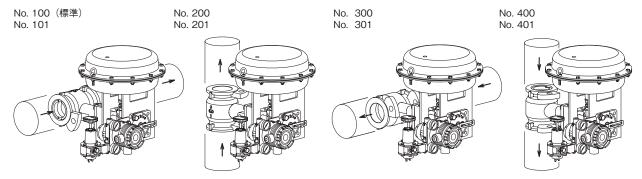

注 面間寸法(K)はISA、S75.04に適合します。また、SAMA PMC23.3Aに準じます。(Scientific Apparatus Makers Association)

接続口径 (B)	配管取付姿勢(SV0512-□□□)	L
	100、101、500、501、010、011、020、021	287
3	200、201、600、601、030、031、040、041	295
	300、301、700、701、050、051、060、061	303
	400、401、800、801、070、071、080、081	295
	100、101、500、501、010、011、020、021	285
	200、201、600、601、030、031、040、041	295
4	300、301、700、701、050、051、060、061	305
	400、401、800、801、070、071、080、081	295

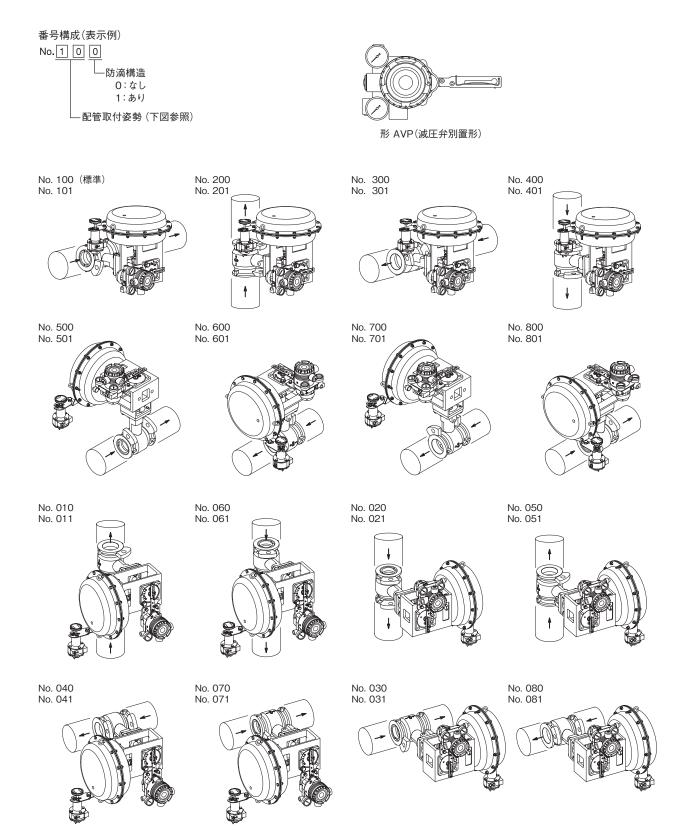
図B-2 フランジ形面間および外形寸法



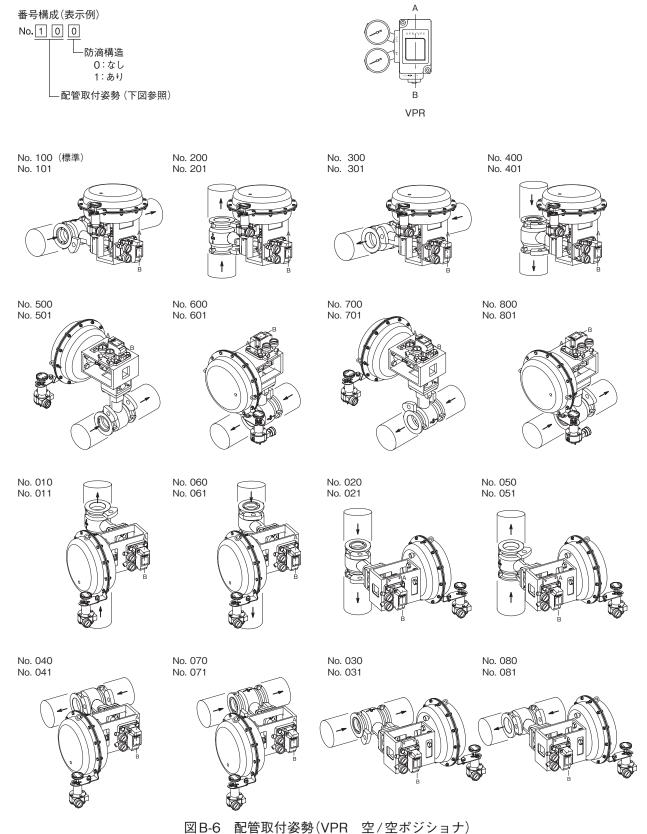
図B-3 配管取付姿勢(ポジショナなし)


- 注1 フィルタ付減圧弁は、地面に対し垂直方向に組み付けます。
- 注2 配管取付姿勢は、番号で指定してください。
- 注3 屋内設置の場合、防滴構造は必要ありません。
- 注4 配管取付姿勢番号の先頭2桁が50、60、70、80、01、02、03、04、05、06、07、08で、屋外設置の場合は防滴構造が必要となります。
- 注5 配管取付姿勢番号の先頭2桁が10、20、30、40の場合、屋外設置でも防滴構造は必要ありません。
- 注6 フィルタ付減圧弁の取付方法で配管取付姿勢番号の先頭2桁が10、20、30、40の場合、一体形、置形のどちらかを選択できます。

番号構成(表示例)



形AVP(減圧弁一体形)


図B-4 配管取付姿勢(AVP 電/空ポジショナ+減圧弁一体)

- 注1 フィルタ付減圧弁は、地面に対し垂直方向に組み付けます。
- 注2 配管取付姿勢は、番号で指定してください。
- 注3 屋内設置の場合、防滴構造は必要ありません。
- 注4 配管取付姿勢番号の先頭2桁が10、20、30、40の場合、屋外設置でも防滴構造は必要ありません。

図B-5 配管取付姿勢(AVP 電/空ポジショナ+減圧弁別置)

- 注1 フィルタ付減圧弁は、地面に対し垂直方向に組み付けます。
- 注2 配管取付姿勢は、番号で指定してください。
- 注3 屋内設置の場合、防滴構造は必要ありません。
- 注4 配管取付姿勢番号の先頭2桁が50、60、70、80、01、02、03、04、05、06、07、08で、屋外設置の場合は防滴構造が必要となります。
- 注5 配管取付姿勢番号の先頭2桁が10、20、30、40の場合、屋外設置でも防滴構造は必要ありません。

- 注1 フィルタ付減圧弁は、地面に対し垂直方向に組み付けます。
- 注2 配管取付姿勢は、番号で指定してください。
- 注3 屋内設置の場合、防滴構造は必要ありません。
- 注4 配管取付姿勢番号の先頭2桁が50、60、70、80、01、02、03、04、05、06、07、08で、屋外設置の場合は防滴構造が必要となります。
- 注5 配管取付姿勢番号の先頭2桁が10、20、30、40の場合、屋外設置でも防滴構造は必要ありません。

付録C 主要交換部品

調節弁の各部品は長期の使用に耐えるよう製作されていますが、次の部品については調節弁の保守作業 として交換をお願いします。

• 本体部

グランドパッキン ガスケット(配管用) 分解時必ず交換

- 操作器
 - ・ダイヤフラム 5年ごとを目安とします。
 - ・ブッシュ / (交換については、最寄りの当社の支店、営業所 へお問い合わせください。)
 - ・キャップ
 - ・シールワッシャ / (ただし分解時は交換)

C-1

ご注文・ご使用に際してのご承諾事項

平素は当社の製品をご愛用いただき誠にありがとうございます。

さて、本資料により当社製品(システム機器、フィールド機器、コントロールバルブ、制御機器)をご注文・ご使用いただく際、見積書、契約書、カタログ、仕様書、取扱説明書などに特記事項のない場合には、次のとおりとさせていただきます。

1. 保証期間と保証範囲

1.1 保証期間

当社製品の保証期間は、ご購入後またはご指定場所に納入後1年とさせていただきます。

1.2 保証範囲

上記保証期間中に当社側の責により故障が生じた場合は、納入した製品の代替品の提供または修理対応品の 提供を製品の購入場所において無償で行います。ただし、次に該当する場合は、この保証の対象範囲から除外 させていただきます。

- ① お客さまの不適当な取り扱い ならびに ご使用の場合 (カタログ、仕様書、取扱説明書などに記載されている条件、環境、注意事項などの不遵守)
- ② 故障の原因が当社製品以外の事由の場合
- ③ 当社 もしくは 当社が委託した者以外の改造 または 修理による場合
- ④ 当社製品の本来の使い方以外で使用の場合
- ⑤ 当社出荷当時の科学・技術水準で予見不可能であった場合
- ⑥ その他、天災、災害、第三者による行為などで当社側の責にあらざる場合

なお、ここでいう保証は、当社製品単体の保証を意味するもので、当社は、当社製品の故障により誘発される お客さまの損害につきましては、損害の如何を問わず一切の賠償責任を負わないものとします。

2. 適合性の確認

お客さまの機械・装置に対する当社製品の適合性は、次の点を留意の上、お客さま自身の責任でご確認ください。

- ① お客さまの機械・装置などが適合すべき規制・規格 または 法規
- ② 本資料に記載されているアプリケーション事例などは参考用ですので、ご採用に際しては機器・装置の機能や安全性をご確認の上ご使用ください。
- ③ お客さまの機械・装置の要求信頼性、要求安全性と当社製品の信頼性、安全性の適合当社は品質、信頼性の向上に努めていますが、一般に部品・機器はある確率で故障が生じることは避けられません。当社製品の故障により、結果として、お客さまの機械・装置において、人身事故、火災事故、多大な損害の発生などを生じさせないよう、お客さまの機械・装置において、フールプルーフ設計(**1)、フェールセーフ設計(**2)(延焼対策設計など)による安全設計を行い要求される安全の作り込みを行ってください。さらには、フォールトアボイダンス(**3)、フォールトトレランス(**4)などにより要求される信頼性に適合できるようお願いいたします。
 - ※1. フールプルーフ設計:人間が間違えても安全なように設計する
 - ※2. フェールセーフ設計:機械が故障しても安全なように設計する
 - ※3. フォールトアボイダンス:高信頼度部品などで機械そのものを故障しないように作る
 - ※4. フォールトトレランス: 冗長性技術を利用する

3. 用途に関する注意制限事項

3.1 用途に関する制限事項

原子力・放射線関連設備でご使用の場合は、以下の表に従ってください。

	原子力品質(※5)要	原子力品質(※5)不要
放射線管理区域(※6)内	使用不可(原子力向けリミットスイッチ(※7)を除く)	使用不可(原子力向けリミットスイッチ(※7)を除く)
放射線管理区域(※6)外	使用不可(原子力向けリミットスイッチ(※7)を除く)	使用可

- ※5. 原子力品質: JEAG 4121 に適合すること
- ※6. 放射線管理区域:「電離放射線障害防止規則:第三条」「実用発電原子炉の設置、運転等に関する規則:第二条2四」「放射線を放出する同位元素の数量等を定める件:第四条」等で設定要件が定められている
- ※7. 原子力向けリミットスイッチ: IEEE 382 かつ JEAG 4121 に従って設計・製造・販売されるリミットスイッチ

医療機器には、原則使用しないでください。

産業用途製品です。一般消費者が直接設置・施工・使用する用途には利用しないでください。なお、一部製品は一般消費者向け製品への組み込みにご利用になれますので、そのようなご要望がある場合、まずは当社販売 員にお問い合わせください。

3.2 用途に関する注意事項

次の用途に使用される場合は、事前に当社販売員までご相談の上、カタログ、仕様書、取扱説明書などの技術資料により詳細仕様、使用上の注意事項などを確認いただくようお願いいたします。

さらに、当社製品が万が一、故障、不適合事象が生じた場合、お客さまの機械・装置において、フールプルーフ設計、フェールセーフ設計、延焼対策設計、フォールトアボイダンス、フォールトトレランス、その他保護・安全回路の設計および 設置をお客さまの責任で実施することにより、信頼性・安全性の確保をお願いいたします。

- ① カタログ、仕様書、取扱説明書などの技術資料に記載のない条件、環境での使用
- ② 特定の用途での使用
 - * 原子力·放射線関連設備

【放射線管理区域外かつ原子力品質不要の条件での使用の際】 【原子力向けリミットスイッチを使用する際】

- * 宇宙機器/海底機器
- * 輸送機器

【鉄道・航空・船舶・車両設備など】

- * 防災・防犯機器
- * 燃焼機器
- * 電熱機器
- * 娯楽設備
- * 課金に直接関わる設備/用途
- ③ 電気、ガス、水道などの供給システム、大規模通信システム、交通・航空管制システムで高い信頼性が 必要な設備
- ④ 公官庁 もしくは 各業界の規制に従う設備
- ⑤ 生命・身体や財産に影響を与える機械・装置
- ⑥ その他、上記①~⑤に準ずる高度な信頼性、安全性が必要な機械・装置

4. 長期ご使用における注意事項

一般的に製品を長期間使用されますと、電子部品を使用した製品やスイッチでは、絶縁不良や接触抵抗の増大による発熱などにより、製品の発煙・発火、感電など製品自体の安全上の問題が発生する場合があります。お客さまの機械、装置の使用条件・使用環境にもよりますが、仕様書や取扱説明書に特記事項のない場合は、10年以上は使用しないようお願いいたします。

5. 更新の推奨

当社製品に使用しているリレーやスイッチなど機構部品には、開閉回数による磨耗寿命があります。

また、電解コンデンサなどの電子部品には使用環境・条件にもとづく経年劣化による寿命があります。当社製品のご使用に際しては、仕様書や取扱説明書などに記載のリレーなどの開閉規定回数や、お客さまの機械、装置の設計マージンのとり方や、使用条件・使用環境にも影響されますが、仕様書や取扱説明書に特記事項のない場合は5~10年を目安に製品の更新をお願いいたします。

一方、システム機器、フィールド機器(圧力、流量、レベルなどのセンサ、調節弁など)は、製品により部品 の経年劣化による寿命があります。経年劣化により寿命ある部品は推奨交換周期が設定してあります。推奨交 換周期を目安に部品の交換をお願いいたします。

6. その他の注意事項

当社製品をご使用するにあたり、品質・信頼性・安全性確保のため、当社製品個々のカタログ、仕様書、取扱 説明書などの技術資料に規定されています仕様(条件・環境など)、注意事項、危険・警告・注意の記載をご理 解の上厳守くださるようお願いいたします。

7. 仕様の変更

本資料に記載の内容は、改善その他の事由により、予告なく変更することがありますので、予めご了承ください。お引き合い、仕様の確認につきましては、当社支社・支店・営業所 または お近くの販売店までご確認くださるようお願いいたします。

8. 製品・部品の供給停止

製品は予告なく製造中止する場合がありますので、予めご了承ください。製造中止後は保証期間内においても納入した製品の代替品を提供できない場合があります。

修理可能な製品について、製造中止後、原則5年間修理対応いたしますが修理部品がなくなるなどの理由でお 受けできない場合があります。

また、システム機器、フィールド機器の交換部品につきましても、同様の理由でお受けできない場合があります。

9. サービスの範囲

当社製品の価格には、技術者派遣などのサービス費用は含んでおりませんので、次の場合は、別途費用を申し受けます。

- ① 取り付け、調整、指導 および 試運転立ち会い
- ② 保守・点検、調整 および 修理
- ③ 技術指導 および 技術教育
- ④ お客さまご指定の条件による製品特殊試験 または 特殊検査

なお、原子力管理区域(放射線管理区域)および被爆放射能が原子力管理区域レベル相当の場所においての上 記のような役務の対応はいたしません。

宛: 当社担当者→マーケティング部

マニュアルコメント用紙

このマニュアルをよりよい内容とするために、お客さまからの貴重なご意見(説明不足、間違い、誤字脱字、ご要望など)をお待ちいたしております。お手数ですが、本シートにご記入の上、当社担当者にお渡しください。

ご記入に際しましては、このマニュアルに関することのみを具体的にご指摘くださいますようお願い申し上げます。

資料名	3 称:偏	oWing(フローウィング) 心軸回転形調節弁(3B, 4B) VFR □□□ 取扱説明書				資料番号	를 : ON	M1-8130-0100	第 12 版
おね	宮 前					貴 社	名		
所属	部門					電話番号			
貴社	住所								
ページ	行		コ	メ	ン	ト 記	入	欄	
	-								
 当社記 <i>〕</i>	 \欄								
記一								受付 No.	受付担当者
事									

資料番号 OM1-8130-0100

FloWing(フローウィング)偏心軸回転形調節弁(3B, 4B) 資料名称

形 VFR □□□ 取扱説明書

発行年月 1982年 2月 初 版 改訂年月 2021年 7月 第12版

発行/制作 アズビル株式会社

アドバンスオートメーションカンパニー

本 社 〒100-6419 東京都千代田区丸の内2-7-3 東京ビル

北海道支店 \mathbf{a} (011)211-1136 中部支社 \mathbf{a} (052)265-6207 東北支店 \mathbf{a} (022)290-1400 関西支社 \mathbf{a} (06)6881-3331 北関東支店 \mathbf{a} (048)621-5070 東京支社 \mathbf{a} (03)6432-5142 九州支社 \mathbf{a} (093)285-3530

https://www.azbil.com/jp/

